

Nymph Cove

Nymph Cove: IDENTIFICATION TO GENUS: Gomphidae (Part 2)

By Ken J Tennessen

IIn this installment of Nymph Cove, we continue with gomphid genera that present greater challenges for identification than those we diagnosed in the last issue of $A R G I A$. These genera next up are Arigomphus, Dromogomphus, Gomphurus, Hylogomphus, Phanogomphus, Phyllogomphoides, Stenogomphurus, and Stylurus.

Stylurus

The first genus we will diagnose is Stylurus, as it has some unique

characteristics that set it off from the other seven genera. Stylurus nymphs have short hind (metathoracic) legs, the length of the femur only about 0.7-0.9 times the width of the head; in the other seven genera, this ratio is $0.9-1.25$ (usually >1.0). Secondly, the labial palp of Stylurus has a large end tooth and a concave inner row of only two or three teeth (Fig. l). The real kicker, however, is the number of sclerites on the venter of abdominal segment 8: in Stylurus, there are only three ventral sclerites whereas there are five in the other genera (Fig. 2); in other words, Stylurus lacks small anterolateral sclerites on this segment.

Phyllogomphoides

The next genus that stands apart is Phyllogomphoides. Again, look ventrally at the abdomen, but this time at segment 7 , and see that there are only three main sclerites as compared to five in the remaining six genera. Yes, the other six genera have a small anterolateral sclerite on the venter of segment 7 much like on segment 8 . Also, in Phyllogomphoides segment 10 is longer than segment 9 . Another distinction works for full-grown nymphs of Phyllogomphoides -the wing sheaths are slightly divergent, but words of caution here with exuviae: wing sheath

Dromogomphus

Figure 2. Abdominal segment 8, venter (als = anterolateral sclerite).

Figure 1. Stylurus palp.
divergence might not be reliable, as sheaths that are normally parallel in the nymph stage can become spread apart during emergence and when the exuviae dry they stay divergent. One more note: Phyllogomphoides has a darkened middorsal ridge on segments 7-9 that resembles the ridge on Dromogomphus and a few species of Phanogomphus -the above characters distinguish Phyllogomphoides from those genera.

The next six genera are variable in body shape but similar in many ways. They may be distinguished by comparing the lengths, shape, and angles of the posterior abdominal segments and, in a few cases, the length of the prementum.

We consider Arigomphus first. While it's true that Arigomphus has a narrowly tapered abdomen at the posterior end, so do several species of Phanogomphus (mainly due to an elongated segment 9). A distinguishing character of Arigomphus is that most inner teeth of the palpal blade are truncate with a sharp proximal corner compared to the other genera in which the teeth are rounded or angled with a more bluntly rounded

Nymph Cove

Arigomphus

Gomphurus

Figure 3. Labial palp of Arigomphus and Gomphurus.
proximal corner (Fig. 3). Two other helpful differences are 1) abdominal segment 10 is about 1.2 times longer than wide in Arigomphus but usually as wide as or wider than long in the remaining genera (exceptions are a few species of Phanogomphus), and 2) the posterolateral spine on abdominal segment 9 is close to the lateral margin of segment 10 (almost appressed) in Arigomphus but separated by a gap of about 0.2 mm in the other genera.

Dromogomphus,
 Phanogomophus, Hylogomphus, Gomphurus \& Stenogomphurus

We focus attention now on Dromogomphus, Gomphurus, Hylogomphus, Pbanogomphus, and Stenogomphurus. We can split these genera into two groups by circumscribing the angle of taper from segment 7 to the tip of the epiproct. In Dromogomphus and Phanogomphus, the tip of the abdomen narrows gradually and the angle of taper is usually <55 degrees; in Gomphurus, Hylogomphus, and Stenogomphurus, the tip of the abdomen narrows more abruptly and the angle of taper is >55 degrees, often as high as 70 degrees (Fig. 4). With some field experience, the angle of taper
often can be estimated by eye. When in doubt, check the dorsal profile of the abdominal segments: in Dromogomphus and Phanogomphus, the segments are slightly concave in lateral view (straight in the other three genera), and most Dromogomphus and Phanogomphus have a small middorsal hook on segments 4 or 5-7 (a few exceptions in

Phanogomphus

Phanogomphus) whereas Gomphurus, Hylogomphus, and Stenogomphurus are without a hook on these segments. One more hint: abdominal segment 10 length:width ratio is >0.75 in Dromogomphus and Phanogomphus but <0.65 in Gomphurus, Hylogomphus, and Stenogomphurus.

To recognize Dromogomphus from Phanogomphus, check the dorsum of abdominal segments 8 and 9: there is a well-defined dark ridge in Dromogomphus compared to the rounded though slightly raised middorsum of Phanogomphus (Fig. 5). The difference can be misconstrued when certain species of Phanogomphus are in hand, such as P. graslinellus and P. sandrius in which the middorsum is more raised (almost ridge-like), but it is not as sharply defined as in Dromogomphus. Experience with both genera and comparing reared specimens can be a big help in learning the difference. Another helpful character is hind femur length compared to head width: in Dromogomphus, the ratio is >1.2, in Phanogomphus ≤ 1.2.

We are now down to the muddy waters of Gomphurus, Hylogomphus, and Stenogomphurus. Hylogomphus lacks a

Gomphurus

Figure 4. Degree of abdominal taper of Phanogomphus and Gomphurus.

Nymph Cove

Phanogomphus

Figure 5. Middorsal ridge on abdominal segment 9 of Dromogomphus spinosus and Phanogomphus graslinellus.

Figure 6. Abdominal segment 8 ventral sclerite comparison of Stenogomphurus and Gomphurus.

middorsal hook on abdominal segment 8 , whereas a small one is present in Gomphurus and most Stenogomphurus specimens. This character is a bit problematic as some Hylogomphus have a sharp denticle or two at the middle of the posterior margin of segment 8 which can be misinterpreted as a middorsal hook; also, some specimens of Stenogomphurus consanguis have a reduced hook on segment 8 . The ratio of abdominal segment 9 length:width is ≤ 0.38 in Hylogomphus versus ≥ 0.38 in Gomphurus and Stenogomphurus. And, segments 5-9 are smooth middorsally in Hylogomphus versus granulate in the other two genera. Size can help a bit: final instar Hylogomphus are usually smaller than the other two genera but there is considerable overlap in total length (Hylogomphus 20.0-27.0 mm , Gomphurus $22.0-40.0 \mathrm{~mm}$, Stenogomphurus $22.5-29.0 \mathrm{~mm}$).

To separate Stenogomphurus from Gomphurus, there are three characters to check. First, the anterolateral sclerite on the venter of abdominal segment 8 is about half as long as the lateral sternite in Stenogomphurus versus less than half as long in Gomphurus (Fig. 6) [note that the sclerites in Hylogomphus are similar to those in Stenogomphurus]. Second, the base of the prementum is complete medially and straight across (transverse) in Stenogomphurus versus incomplete medially and angled in Gomphurus (Fig. 7). Finally, the ratio of prementum length:distal width is $1.00-1.07$ in Stenogomphurus and 1.07-1.30 in Gomphurus.

Some of the above characters are pretty detailed and difficult, and we realize it can be a lot to take in. We hope it's not too daunting for you to keep trying! Just remember, the more you work at it, the more familiar it will become and you will have success. In the next issue, we'll start tackling those magnificent aeshnids!!

Ken Tennessen has published over 80 technical papers on Odonata. His recent book, Dragonflies Nymphs of North America, was published by Springer in 2019.

